This commit is contained in:
Alexander Svan
2025-04-01 06:47:40 +00:00
parent b0ce430841
commit 14ea92abb9
10 changed files with 188 additions and 52 deletions

86
script.py Normal file
View File

@@ -0,0 +1,86 @@
import chromadb
import requests
import argparse
OLLAMA_URL = "http://ollama:11434/api"
CHROMA_COLLECTION_NAME = "rag_documents"
# Connect to ChromaDB client
client = chromadb.HttpClient(host="chroma", port=8000)
collection = client.get_or_create_collection(name=CHROMA_COLLECTION_NAME)
def get_embedding(text, embedding_model):
"""Generate an embedding using Ollama."""
response = requests.post(f"{OLLAMA_URL}/embeddings", json={"model": embedding_model, "prompt": text})
if response.status_code == 200:
return response.json().get("embedding")
else:
raise Exception(f"Failed to get embedding: {response.text}")
def seed_database(embedding_model):
"""Seed the ChromaDB with example documents."""
documents = [
"Artificial Intelligence is transforming industries.",
"Machine learning helps computers learn from data.",
"Deep learning uses neural networks to process information.",
"RAG enhances language models with retrieved knowledge."
]
for i, doc in enumerate(documents):
embedding = get_embedding(doc, embedding_model)
collection.add(ids=[str(i)], embeddings=[embedding], metadatas=[{"text": doc}])
print(f"Added document {i}: {doc}")
print("Database seeding complete.")
def search(query, embedding_model, llm_model, top_k=2):
"""Retrieve similar documents and generate an answer using an LLM."""
query_embedding = get_embedding(query, embedding_model)
results = collection.query(query_embeddings=[query_embedding], n_results=top_k)
retrieved_docs = [doc["text"] for doc_list in results["metadatas"] for doc in doc_list]
if not retrieved_docs:
print("No relevant documents found.")
return
# Construct the LLM prompt
prompt = f"Use the following documents to answer the question:\n\n"
for doc in retrieved_docs:
prompt += f"- {doc}\n"
prompt += f"\nQuestion: {query}\nAnswer:"
response = requests.post(f"{OLLAMA_URL}/generate", json={"model": llm_model, "prompt": prompt, "stream": False})
print("RAW RESPONSE:", response.text)
if response.status_code == 200:
try:
data = response.json()
answer = data.get("response", "No response field found.")
except requests.exceptions.JSONDecodeError:
answer = response.text # Fallback to raw text
print("\nSearch Results:\n")
for doc in retrieved_docs:
print(f"Retrieved: {doc}")
print("\nGenerated Answer:\n", answer)
else:
print(f"Failed to generate response: {response.status_code} - {response.text}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("command", choices=["seed", "search"], help="Command to run")
parser.add_argument("--query", type=str, help="Query text for searching")
parser.add_argument("--embedding_model", type=str, default="mxbai-embed-large", help="Embedding model")
parser.add_argument("--llm_model", type=str, default="gemma3", help="LLM model for generating responses")
args = parser.parse_args()
if args.command == "seed":
seed_database(args.embedding_model)
elif args.command == "search":
if not args.query:
print("Please provide a query with --query")
else:
search(args.query, args.embedding_model, args.llm_model)